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Abstract: Period doubling, or a frequency halving sequence, is a common property of nonlinear dynamical systems. Period 

can be related to other physical quantities, e.g. length, energy and temperature, which obtain the corresponding 

doubling/halving behavior. It is found that physical properties of natural phenomena, systems and elementary particles can be 

derived directly from the Planck time, taken as the fundamental period. Analysis of experimental data suggests that the period 

doubling process takes place in three and four internal degrees of freedom. It is further found out that long term stability 

complies with the stability condition of nonlinear dynamical systems. A theory of period doubling in 1/r-type nonlinear 

systems with three and four internal degrees of freedom is presented. 
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1. Introduction 

The objective of this work is to find out whether period 

doubling, the characteristic property of nonlinear dynamical 

systems [1,2], can be found in natural phenomena and 

1/r-nonlinear gravitational and Coulombic systems. Period 

doubling means, in terms of frequency, that a sequence of 

frequencies below the fundamental frequency is borne within 

the system. Using well known physical relations periods and 

frequencies can be converted into other physical quantities 

(e.g. energy), which show the period doubling structure, too. 

In dynamical systems, an attractor is a set of physical 

properties toward which a system tends to evolve, regardless 

of the starting conditions of the system [3]. Period is one of 

these properties. 

Period doubling is a real physical phenomenon, which 

takes place in many nonlinear systems [4,5,6,7,8]. Period 

doubling also means self-similarity, and a fractal universe is a 

topic of modern scientific research [9]. 

If τ0 is the shortest period in the system, then periods 2τo, 

4τo, 8τo, 16τo etc. appear during the doubling process. Period 

doubling can be identified by taking the ratio R of two 

periods τn and τo. The ratio will become 

n

o

nR 2=
τ
τ

=                  (1) 

and the n’th period is 

o
n

n τ⋅=τ 2                   (2) 

In (2) n is a positive integer. Some periods are more stable 

than others. Periods of the form 

on

n

τ⋅=τ 22                  (3) 

are especially stable [2]. 

The connection between the Planck scale and properties of 

matter is a long standing issue in physics. The problem is in 

the extreme values of the Planck scale physical quantities. 

The Planck energy Eo ≈ 3·1022 MeV is far too large for the 

rest energy of any elementary particle, the Planck length lo ≈ 

4·10-35 m correspondingly far too small for any real object. 

The Planck time or period τo ≈ 10-43 s is likewise extremely 

short for any real world event. The Planck scale units are 

defined using natural constants h, c, G and εo. In this study h 

is used instead of h-bar, because energy is h/period. 

A process generating sub-harmonic frequencies would 

decrease the Planck energy by bringing about well defined 

longer periods which, in turn, yield lower energy levels and 

larger structures etc. 

The Planck period can be converted into other physical 

Planck scale quantities, for instance into energy by E0=h/τo 

and length by l0=c τo. 
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Equation (2) can be generalized for the physical quantities 

Q, which can be obtained from the Planck period τo: 

o
n

n QQ ⋅= ±2                (4) 

where n is the perceived number of doublings/halvings. The 

integer part of n in (4) depends on the relative magnitudes of 

the quantities in comparison, but the fractional part of n is the 

key issue showing how far n is from an integer. To test (4) 

several n-values were calculated for quantities in different 

physical phenomena and systems [10,11,12]. The distribution 

of the fractional parts of n is plotted in Fig. 1.  

For instance the ratio of the rest energy of the 

electron-positron pair and the Planck energy yields n= -74.66. 

This is plotted as n.66. The ratio of the orbital velocity of 

Saturn and the speed of light yields n= -14.93, plotted as 

-n.07 (a little below an integer value). 

The fractional parts seem to group around 0, 1/3 and 2/3 

suggesting that n is an integer divided by three, which means 

that the calculated ratios are cube roots of an integer power 

of 2. Rewriting (4) according to this finding yields 

o

N

N QQ ⋅=
±

32
                  (5) 

where N=3n is an integer. Cubing both sides of (5) yields 

33
2 o

N
N QQ ⋅= ±                  (6) 

Equation (6) suggests that the period doubling process is 

volumetric for all quantities analyzed in Fig. 1. This means 

that the properties of the phenomena and systems are 

determined by three internal (orthogonal by definition) 

degrees of freedom, which can be visualized by a 

3-dimensional geometric structure, which is a right 

parallelepiped. 

 

Figure 1. Distribution of fractional parts of n in (4).Bin size is 0.1. 

If the periods defining a property (e.g. energy) are τi, τj and 

τk, a 3-d period-volume Vτ is obtained: 

kjiV τττ=τ                   (7) 

where periods τi, τj and τk are the corresponding edge lengths. 

Assuming that (2) is valid for each of the three periods, then 

τi=2iτo , τj=2jτo and τk=2kτo, and (7) becomes: 

3)(
2 o

kji
V τ= ++

τ                 (8) 

The measured values, or the scalar observables τN, are 

obtained by further taking a cube root (=geometric mean) of 

both sides of (8): 

o

N

o

kji

N τ=τ=τ
++

33 22
             (9) 

Equation (9) is the same as (5) written in terms of period. 

N=i+j+k is the total number of period doublings and the 

volume Vτ in (9) doubles each time any one of the edges 

doubles.  

The corresponding equation for a system with four degrees 

of freedom is 

o

M

o

pnml

M τ=τ=τ
+++

44 22           (10) 

In (9) and (10) i, j ,k, l, m, n and p are positive integers. It 

is important to note that (8) returns a geometric mean of the 

edge lengths in (7), and thus hides the internal structure of 

the system. The same applies to (10). 

For stable systems i, j, k and l, m, n, p must be powers of 2 

themselves according to the stability condition (3). Therefore, 

it is possible to decompose N into i, j, k and M into l, m, n, p 

and obtain information about the internal structure of the 

system.  

The ratio of the Coulomb energy of the elementary charge 

and the Planck charge (Ch. 2.1) obeys (10) indicating that the 

intrinsic periods related to Coulomb energy double in four 

degrees of freedom. The elementary particles possess 

independently both mass-energy (mc
2
) and electric (Coulomb) 

energy, and therefore (9) and (10) may be combined into one 

energy-equation: 

oo

MN

MN EE 43
, 22

−
−

⋅=             (11) 

Eoo is the generalized Planck energy. For particles 

Eoo=2.6388·10
25

 MeV (Eoo= 2
9.75

·Eo, see Ch. 2.1) 

We assume that the intrinsic confined energy can be stored 

in both rotational and vibrational modes in all degrees of 

freedom. A rotational mode characterized by period 

(=circumference) is converted into a vibrational one by 

division by π (circumference to diameter, or circular to linear 

motion). Multiplication by π turns a vibrational mode 

(diameter) into a rotational one (circumference). 

For energy (9) becomes: 

o

Nn

N EE ⋅π=
−

33 2               (12) 

where n=±1, ±2, ±3. n=±1 means that one of the three 

degrees of freedom has turned from rotational into 

vibrational mode or vice versa. For four degrees of freedom 

(12) becomes 
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4 42
m M

M o
E Eπ

−
= ⋅               (13) 

where m=±1, ±2, ±3, ±4. 

Eq. (11) becomes correspondingly 

oo

MmNn

MN EE ⋅π⋅π=
−−

)2()2( 4433
,

         (14) 

In principle n, N, m and M are independent of each other in 

(14). 

2. Data Analysis 

The gravitational constant G is the main source of 

inaccuracy in the Planck scale units. 

The relative standard uncertainty of G is 120 ppm and 

hence that of the Planck mass, energy and temperature is 60 

ppm. The values of the natural constants have been adopted 

from the NIST table of natural constants. 

The calculated values used for reference are displayed in 

Table 1. 

2.1. Elementary Electric Charge 

Table 1 shows that the Planck charge qo=(4πεohc)
½
 is 

surprisingly close to the elementary electric charge (e = 

1.602·10
-19

 As) differing only by a factor of about 29. 

Obviously equality would be the simplest case, but the 

difference suggests that sub-charges have been created in the 

process of time, as the internal period doubling has continued. 

The ratio of the Coulomb energies (charges squared) is 

2

2
2mo

q

e
=                 (15) 

Equation (15) yields the perceived number m of period 

doublings, or energy halvings, needed for the Coulomb 

energy of the Planck charge to become the Coulomb energy 

of the elementary electric charge. Calculation yields 

44

39

7499.9

2

2

222

pnml

o

e

q
+++

=≅=        (16) 

which (16) means that the total number of period doublings is 

M =4m=39 in four degrees of freedom. 

According to (16), a perceived charge e
2
 is created: 

39

2 2 242 o oe q g q
−

= ⋅ = ⋅             (17) 

where g = 2
-39/4

. The elementary charge squared is 

superstable (otherwise we would not exist in our present 

form). It should be now possible to decompose M=39 into 

superstable periods according to (3). Indeed, M can be 

written as 1+2+4+32=2
0
+2

1
+2

2
+2

5
, which shows the 

superstability (3) of the related periodic structure. 

The value of e can be calculated from (17) with g=2
-39/4

. 

One obtains e=1.60213·10
-19

 As, which is accurate to 30 ppm 

compared to the NIST value. Taking the square root of e
2
 in 

(17) also yields the polarity of the electric charge. 

Equation (17) suggests that electrical charges other than 

the elementary charge may exist. High energy particle 

collisions may create suitable conditions for a short while (i.e. 

other g-values). This situation would be, in a sense, a time 

reversal, because the elementary charge would evolve back 

towards the Planck charge. This situation would confuse the 

calculation of the elementary particle masses, because the 

elementary electric charge or its multiple is now assumed for 

all charged particles. We conclude that the number of degrees 

of freedom is four for the Coulombic energy systems. 

Table 1. Planck scale references 

Quantity Value  

Energy Eo 3.0604·1022 MeV 

Length lo 4.0512·10-35 m 

Temperature To 3.5515·1032 K 

Velocity c 299792458 m/s 

Mag. mom-orb µo-orb 1.5485·10-46 Am2 

Mag. mom-rad µo-rad 3.8207·10-46 Am2 

Charge qo 4.7013·10-18 As 

2.2. Electron 

The observable intrinsic properties of an electron are the 

rest energy (or mass), the electric charge and the magnetic 

moment.  

2.2.1. Charge 

The elementary charge is calculated in Ch. 2.1.  

2.2.2. Rest Energy 

The electron-positron pair creation is the lowest energy 

mass creation process. The electron and the positron always 

come together forming a particle-antiparticle combination. 

Comparison of the rest energy 1.022 MeV of the ep-pair and 

the Planck energy Eo yields 

3

1286432

33

224

665.74 2222
022.1

++−++−−− ==≅=
kji

oE
   (18) 

where 74.665 is the perceived number of period doublings. 

Using N=3·74.665=224 for the total number of doublings one 

obtains 1.021 MeV for the ep-pair mass, which differs from 

the NIST value by 0.1%. As can be seen the ep-structure is 

superstable (N=2
5
+2

6
+2

7
) as it should be. One more period 

doubling in all three degrees of freedom (N=227) halves the 

energy of the pair, and two 0.511 MeV particles are borne. 

Mass is non-polar, unlike the electric charge, because the rest 

energy of the ep-pair is obtained by taking a cube root which 

gives either positive (this case) or negative values. 

It is worth noting that it is the ep-pair that is superstable. 

For this reason it is tempting to think that it is the positron 

that gives the proton its positive elementary charge. 

2.2.3. Magnetic Moment 

We need to define the Planck scale magnetic moment for 

calculating the magnetic moment of the ep-pair. Magnetic 

moment µ is classically defined as a current loop, where the 
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current is i and the loop area A. The magnetic moment of the 

loop is µ=iA. We denote the Planck scale reference by µo-orb 

meaning that the circumference (orb) of the loop is the 

Planck length lo in Fig. 2. The loop current is the elementary 

charge divided by period, i.e. i=e/τo. The magnetic moment 

becomes 

 

Figure 2. The Planck scale magnetic moment for the electron. 

π
τ

=π
τ

==µ −
4

)(
2

2 o

o
orbo

ec
r

e
iA         (19) 

The value of µo-orb is 1.5485·10
-46

 Am
2
. Equation (19) 

shows that the magnetic moment grows with growing period 

contrary to energy, which decreases. For the ep-pair 

224 32 64 128

74.6664 3 3

_

½
2 2 2e

o orb

µ
µ

+ +

= ≅ =        (20) 

The magnetic moment of the electron (with N=227) is 

twice that of the ep-pair’s magnetic moment (N=224) 

because the magnetic moment grows with N. Note also the 

same total number of doublings as before for the ep-pair 

mass, as if mass and magnetic moment evolved together. µe 

in (19) is the measured magnetic moment of the electron 

(9.2848·10
-24 

Am
2
).  

The calculated value of µe becomes 9.2863·10
-24

 Am
2
, 

which differs from the NIST value by 0.016%. 

2.3. Proton 

The observable intrinsic properties of a proton are the rest 

energy (or mass), the electric charge and the magnetic 

moment. 

2.3.1. Charge 

As in Ch. 2.1. 

2.3.2. Rest Energy 

Applying (14) for a proton yields 

)2()2( 75.94

2

997.633

0

−−− π⋅π=
oo

p

E

E
        (21) 

where m=0, N/3=63.997, m=-2 and M/4=9.75. Ep=938.28 

MeV is proton’s rest energy. The first part in (21) describes 

the 3-d mass-energy showing that the three degrees of 

freedom are all rotational (n=0 in (14)). In the second part 

m=-2 in (21) means that two of the four degrees of freedom 

of the Coulomb energy system are vibrational. M=39 means 

that the number of period doublings of the Coulomb energy 

is the same for the proton and the electron-positron pair. Eq. 

(21) shows that N/3= 63.997≅64.  As may be expected 

N=3·64=2
6
+2

6
+2

6
 is superstable. For N=3·64=192 the proton 

mass becomes 936 MeV. 

Equation (21) shows that the proton alone is superstable, 

unlike the electron-positron pair, where the pair is superstable. 

The antiproton does not show up in (21), and therefore some 

property of the neutron must possess the ‘anti’-property. 

2.3.3. Magnetic Moment 

Because the 4-d Coulomb energy of the proton seems to 

have two vibrational modes, we define the Planck scale 

magnetic moment in Fig. 3 in such a way that the diameter of 

the current loop is half of the Planck length corresponding to 

the lowest energy state of a particle in a box. Definition of 

the Planck magnetic moment µo-rad (radial type) is: 

 

Figure 3. The Planck scale magnetic moment for the proton. 

2 2
( )

16
o rad o

o

e
iA r ec

πµ π τ
τ− = = =           (22) 

The value of µo-rad is 3.8207·10
-46

 Am
2
 and 

64.000
½

2
p

o rad

µ
µ −

=              (23) 

for the nucleon pair. One more period doubling (N=65) 

doubles the magnetic moment of the pair for each particle. The 

calculated value of µp  becomes 1.4096·10
-26

 Am
2
, which 

differs from the NIST value (1.4106·10
-26

 Am
2
) by 0.07%. 

2.4. Neutron 

2.4.1. Charge 

A neutron has a negatively charged surface layer, a 

positively charged middle layer, and a negative core. The 

total electric charge is zero. 

2.4.2. Rest Energy 

The rest mass of the neutron is 1.28 MeV larger than that 

of the proton. This energy corresponds to the first ‘excited 

state’ of the ep-pair, since 1.29 MeV=2
0.333

·1.022 MeV. 

2.4.3. Magnetic Moment 

The charge distribution suggests that the magnetic moment 

µn of the neutron can be modeled by three current loops. In 

Fig. 4 µs is the magnetic moment of the negative surface 

current loop, µm of the positive middle layer loop and µc that 

of the negative core loop. If the area of the negative core loop 

is small compared to the negative surface loop, then the 

magnetic moment µc of the core can be neglected for the first 

approximate calculations. 

 

lo/2π 

 

lo/4 
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The proton and the neutron sizes are essentially equal, and 

we simply assume that the magnitude of the magnetic 

moment caused by the negative surface is the same as the 

proton’s magnetic moment, but of opposite sign. The 

magnetic moment µm of the middle part is obviously smaller 

and positive.  With these assumptions we can write 

 

Figure 4. The Planck scale magnetic moment for the neutron according to the 

charge distribution. 

mpn µ+µ−≅µ                 (24) 

The measured magnetic moments are µp=1.4106·10
-26

 Am
2
 

and µn= -9.6624·10
-27

 Am
2
. The ‘middle’ magnetic moment 

µm can be solved for from (24) yielding µm=4.438·10
-27

 Am
2
.  

The ratio of µm and µo-rad is 

190

63.333 32 2m

o rad

µ
µ −

= =              (25) 

showing that the ‘middle’ magnetic moment belongs to the 

same period doubling sequence as the proton. Inserting the 

calculated µm into (24) yields µn=-9.662·10
-27

 Am
2
 for the 

neutron, which is practically the same as the measured value. 

We mentioned earlier that the antiproton does not show up in 

(21), and therefore some property of the neutron must 

possess the ‘anti’-property. This analysis suggests that the 

negative surface magnetic moment of the neutron is the 

required ‘anti’-property. 

2.5. Deuteron Magnetic Moment 

A proton and a neutron are together in a deuterium nucleus. 

We would assume the neutron surface magnetic moment µs to 

cancel the proton magnetic moment µp leaving the ‘middle’ 

magnetic moment for the deuteron. The measured value of 

the deuteron magnetic moment is 4.331·10
-27

 Am
2
. µm from 

(24) is nearly the same as the measured value supporting our 

assumption (2.5% difference). The close-by positive 

magnetic moment of the proton and the negative surface 

magnetic moment of the neutron create an attractive force 

and magnetic binding. 

2.6 .Fine Structure Constant 

The fine structure constant α is defined as 

036.137
2

1

2

42
2

2

22

1 =⋅
π

=
π

πε
=

ε
=α−

e

q

e

hc

e

hc ooo     (26) 

Because e
2
=2

-39/4
 · qo

2
, (26) can be written in the form 

gπ=α 2                  (27) 

where g=2
-39/4

 is the geometric factor reflecting the different 

internal structures of the two energy systems e
2
 and qo

2
. 

The calculated value (27) of 1/α =137.0448 differs from 

the NIST value by 60 ppm. 

2.7. Hydrogen 21 cm Line 

A neutral hydrogen atom can experience an electron 

magnetic moment reversal relative to the magnetic moment 

of the proton. The energy released corresponds to 21.12 cm 

wavelength (5.87 µeV) and can be observed in a laboratory 

and astronomical sources. Equation (1) yields 

3

336

006.112
22

12.21 ≅=
ol

cm
           (28) 

With N=3·112=336=2
4
+2

6
+2

8
, one obtains λ= 

2
(16+64+256)/3

·lo=21.04 cm. If comparison is made to the 

Compton wavelength λCe (1.213·10
-12

 m) of the 

electron-positron pair, one obtains: 

3

112

34.37 22
21 ≅=
λCe

cm
           (29) 

Note that both N=336=2
4
+2

6
+2

8
 and N=112= 2

4
+2

5
+2

6
 are 

superstable. This means that the energy of the magnetic 

moment reversal of the electron is directly related to the 

ep-pair rest energy (N=224). 

2.8. Cosmic Background Radiation 

The 3 K cosmic background radiation (CBR) is detected as 

microwave photons coming from all over the sky. The 

spectrum of the radiation corresponds to radiation within a 

blackbody, whose temperature is TCBR=2.73 K (kT=0.235 

meV). Equation (1) yields  

3

320

68.106
22

−− ≅=
o

CBR

T

T
             (30) 

To is the Planck temperature. TCBR = 2.76 K with N=320= 

(64, 128, 128), which is superstable.  

If comparison of ECBR=kT to the 1.022 MeV gamma 

photon is made, one obtains 

02.32
2

022.1

−=CBRE
              (31) 

suggesting that CBR is directly related to the rest energy of 

the ep-pair.  

The number of period doublings links the CBR to the 

ep-pair and the 21 cm wavelength. If CBR is considered as 

the remnant glow of the ‘big bang’, then the temperature of 

the ‘big bang’ has originally been the Planck temperature, 

now diluted by period doubling. In view of this study it 

seems more likely that CBR is a property of the ep-pair 

 

µm 

µc 

lo/4 

µs 
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energy system originating from the Planck energy. 

The next colder temperature is given by N=321=(64, 128, 

129), which corresponds to T = 2.19 K. It is interesting to 

note that this temperature is close to the 2.17 K λ-point of 

liquid helium 
4
He. This is the temperature where helium 

becomes superfluid and detaches from the Earth reference. 

2.9. The Solar System 

The Solar system can be described as a 1/r-nonlinear 

closed system dominated by the gravitational potential of the 

Sun. Ideally a planet orbits on an equipotential surface with a 

constant velocity. The period doubling process would 

discretize both the orbital velocity and the circumference 

(and the radius) of the orbit of a planet.  

Period doubling yields velocities 

cv

N

N ⋅=
−

32
                (32) 

and circumferences of the orbits 

o

M

M ll ⋅= 32
               (33) 

Equations (32) and (33) determine the values for the 

orbital velocities and distances rM=lM/2π from the Sun in the 

period doubling condition. These values are fixed, because 

the Planck scale velocity and length are used as reference. Eq. 

(32) is derived in [11]. The geometric picture of the system 

would resemble a Sun-centered onion, where each layer has a 

specific velocity and radius. 

Table 2, plotted in Fig. 5, displays the observed and 

calculated orbital velocities of the planets (Pluto included).  

The vertical axis shows the orbital velocity in km/s, and 

the horizontal axis the distance from the Sun in astronomical 

units (AU). The asteroids (N=42) occupy the gap between 

Mars and Jupiter. The consequent M-values range from M 

=38 (Mercury) to M =48 in (32) with one exception. There is 

an unoccupied allowed orbit with M =44 between Jupiter and 

Saturn, as if a planet were missing there, too. 

Table 2. Observed and calculated orbits of the planets 

Planet Obs km/s N Calc km/s Obs AU Calc AU  

Mercury 47.5 38 46.1 0.39 0.39  

Venus 35.0 39 36.6 0.72 0.78  

Earth 29.8 40 29.1 1.00 0.98  

Mars 24.1 41 23.1 1.52 1.56  

Asteroids1 18.0 42 18.3 2.77 2.47  

Jupiter 13.1 43 14.5 5.19 4.95  

Missing N/A 44 11.5 N/A 7.85  

Saturn 9.6 45 9.2 9.51 9.89  

Uranus 6.8 46 7.3 19.13 19.79  

Neptune 5.3 47 5.8 29.98 31.41  

Pluto 4.7 48 4.6 39.50 39.58  
1Ceres, Pallas       

Note that the asteroids and the empty M =44 orbit are on 

both sides of Jupiter. 

The calculated (r,v) values are denoted by yellow squares, 

and the planets, denoted by the grey diamonds, seem to stay 

in the immediate vicinity of the calculated (r,v)- values. 

Although the M -values for the velocity are consequent 

integers, not all allowed orbits are occupied, however. It is 

shown in [10, 11] that there are two allowed orbits between 

Mercury and Venus, one between the Earth and Mars, etc. 

This is because the orbital velocity hyperbola v = sqrt 

(GMSun/r) does not fulfill both the velocity (32) and 

circumference (33) conditions, i.e., the hyperbola does not 

cross, or go sufficiently near a (r,v) fixed-point in order for 

there to be a mass concentration. 

This is a fundamental difference to Kepler’s third law, 

because the fixed points (32) and (33) are independent of the 

central mass, unlike the GmM/r hyperbola. 

The green curve in Fig. 5 shows the v = sqrt (GMSun / r) 

hyperbola for the mass of the Sun. For another star the 

hyperbola would be at a different location, and therefore the 

unoccupied orbits would be different, too (because the 

hyperbola would cross other fixed points). The orbital 

velocities would still be given by (32). This is illustrated in 

Fig. 6 for two different center masses.  

 

Figure 5. Comparison of the observed and calculated orbits. 

 

Figure 6. Location of the occupied and unoccupied orbits depends on the 

magnitude of the center mass. The horizontal lines denote the fixed velocities 

(32) and the vertical lines the fixed distances (33). 
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The distances rM of the planets from the Sun obey the 

so-called Titius–Bode rule, found experimentally (not valid 

beyond Uranus). One form of the rule is rM = r+0.4 in 

astronomical units with r = 0, 0.3, 0.6, 1.2, 2.4, . . . (doubling 

r, 0 for Mercury). 

The difference between the Titius–Bode rule for distances 

and (33) is that the (r,v) quantization by period doubling 

yields discrete values, not only for distances, but for the 

orbital velocities as well.  

It should be also noted that this analysis does not deal with 

the masses of the planets since these depend on the initial 

dust and gas distribution. 

Equations (32) and (33) contain a cube root, which means 

that there are three degrees of freedom in both distance and 

velocity (reason for the mental picture of an onion). 

2.10. Quantized Galaxy Redshifts 

If the local group of galaxies is considered as a nonlinear 

closed energy system, then one would expect to see the 

effects of a period doubling process on it. W.G. Tifft of the 

University of Arizona discovered that the redshift difference 

of galaxy pairs grouped around v≈72 km/s and v≈36 km/s 

(most pronounced), if redshift is interpreted as velocity. He 

further noticed that the redshifts of individual galaxies 

grouped in the same way [13 ,14,15]. 

The values reflect the period doubling mechanism, since 

03.12
2

/72 −=
c

skm
            (34) 

and 

03.13
2

/36 −=
c

skm
             (35) 

Tifft has later measured (using the 21 cm Hydrogen line) 

many additional redshifts. All fit the doubling scheme (also 

known as the ninth-root Lehto-Tifft rule including the 

redshift variability). 

The redshift quantization in the local group was confirmed 

by Napier and Guthrie [16], but the phenomenon is largely 

disputed by the mainstream cosmologists. 

3. Period Doubling in 1/r-Nonlinear 

Systems 

 

Figure 7. A closed system with internal degrees of freedom. 

The gray sphere in Fig. 7 describes a system, which has 

three internal degrees of freedom, and which can be 

described by rotation and vibration about the internal (x’, y’, 

z’)-axes. The system can freely move in the normal external 

(x, y, z)-space. 

 

Figure 8. Initial setting for one degree of freedom. 

Nonlinearity is required for the period doubling process to 

occur in the system. Our interest is in the gravitational and 

Coulomb potentials (and their gradients), which are naturally 

nonlinear. The well known -1/r potential leads to the 1/r
2
 

force and Kepler’s third law, which indicates that r
3
=τ2

 

(omitting the constant of proportionality). Solving for r and 

taking the second derivative with respect to period τ one 

obtains 

3

4

2

2

9

2 −
τ−=

τd

rd
              (36) 

By again applying Kepler’s third law, (36) can be written 

in the form 

r
d

rd
22

2 1

9

2

τ
⋅−=

τ
              (37) 

Eq. (37) is formally an equation of motion in terms of 

period of an oscillator, whose spring constant is inversely 

proportional to the period squared. This means that the 

amplitude grows and the oscillations slow down with an 

increasing period. It should be noted that (37) does not 

describe a real motion, since this would require using time t 

instead of period τ. 

The oscillatory solution of (37) would result in positive 

and negative values of r and therefore we rewrite (35) as 

follows: 

2

2 2

'
'

d x a
x

dτ τ
= −             (38) 

2

2 2

'
'

d y a
y

dτ τ
= −             (39) 

Equations (38) and (39) describe oscillations in the internal 

x’ and y’ directions and a 90 degree phase difference between 

them will produce a behavior analogous to circular motion 

about z’. We are using constant a in (38) and (39), because 

we are interested in a solution which doubles the volume r
3
. 

We shall now proceed with solving (38) and (39) 

simultaneously for an initial setting shown in Figure 8 and 

 
y’ 

x’ 0 

y’o vx’o 

r 
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reconstruct the radius using the Pythagorean theorem 

rz’=sqrt(x’
2
+y’

2
). 

The 90 degree phase difference between the x’- and 

y’-rotations is taken care of by choosing proper initial values. 

The test object is initially located at (0, y’o=1) and given an 

initial velocity (vx’o, vy’o= 0). Equations are solved starting 

from an initial period τ=1. The initial x’-component of 

velocity is vx’o=sqrt(a) and the value of a is 46.47014 for 

volumetric (3-d) doubling.  

In principle, volumetric doubling in 4 dimensions does not 

differ from the 3-dimensional doubling. In this case the value 

of the constant a is 82.4. 

The dimensionless constant a is not a physical spring 

constant. Equation (37) shows however, that the 1/r- 

nonlinearity can produce the observed volumetric doubling, 

when proper initial conditions are satisfied. 

Figure 9 is a plot of a simultaneous numerical solution to 

(38) and (39) showing radius r as a function of the period τ. 

One can see that there are plateaus, where the radius remains 

constant over a range of periods. The ratio of adjacent radii 

(plateau values) is the cube root of two, as required by the 

observed distribution in Figure 1 of the fractional parts. 

 

Figure 9. Radius as a function of period. 

Figure 10 shows volume rz’
3
 as a function of period 

squared. With the parameters given the plateaus of constant 

volume occur at doubling volumes (1, 2, 4, 8, 16, 32 etc.). 

 

Figure 10. Radius cubed a as function of period 

Corresponding calculation for rx’ and ry’ can be carried out 

(rotation about x’- and y’-axes). Here we limit ourselves to 

identical rotations about the three axes and the volume is 

therefore represented by V=rz’
3
 (cube) rather than by 

V=rx’ry’rz’ (right parallelepiped). We could also have written 

the volume in terms of period or energy. Similar reasoning 

applies to four degrees of freedom. 

 

Figure 11. Orbital velocity as a function of radius. 

Figure 11 shows the internal ‘orbital velocity’ v=2πrz’/τ for 

the rotational degree of freedom as a function of the radius. It 

can be seen that the orbital velocity is quantized and the ratio 

of adjacent values is the cube root of two. 

The ratio of radii at the transition points is likewise a cube 

root of two and the velocity remains constant over a range of 

radii. Note that the constant velocity plateaus become longer 

and longer with growing radius. 

Equation (37) describes the behavior of an unperturbed 

system. Systems in real environments are seldom fully 

isolated but under continuous influence of perturbations.  

A damped analytical solution to (37) of the type 

r=sin[const·ln(τ/τo)] exists. This is not a physical solution, 

however, since the radius r does not grow with increasing 

period τ. Small perturbations can be taken into account by 

adding attenuation (or amplification) in Eq. (37) such that the 

constant of attenuation is inversely proportional to period 

(b/τ in (40)): 

2

2 2

d r a b dr
r

dd τ ττ τ
= − −               (40) 

4. Discussion 

Period doubling is a general property of nonlinear 

dynamical systems.  It can be rather safely stated that 

nothing in nature is truly linear, and therefore it is tempting 

to analyze different physical systems for discovering the 

possibly hidden occurrence of the period doubling 

phenomenon. 

The early study [10] already gave some results pointing to 

the intrinsic degrees of freedom and related period doubling. 

However, it was not understood at that time that the 

mass-energy and electromagnetic energy systems are 

different and independent. It became later [11, 12] evident 

that the mass-systems have three intrinsic degrees of freedom 

(3-d), whereas the Coulombic-systems possess four degrees 

of freedom (4-d). This leads to non-polar mass and polar 

electricity in a natural way. In particle analysis it is 

convenient to combine the 3-d and 4-d systems into one 

equation (14), which also takes the rotational and vibrational 

modes into account.  

The existence of the intrinsic degrees of freedom cannot be 
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directly seen from the observational data, because a 

measurement returns the geometric mean of e.g. the energy 

content of each degree of freedom. 

The great accuracy of the calculated values for the 

elementary charge, the fine structure constant, the magnetic 

moments of the electron, proton and neutron, indicates that 

the period doubling process is precise even after a large 

number of period doublings. 

The Planck scale values of different physical quantities can 

be used as reference values. It means that there is a direct 

connection between the natural constants and properties of 

matter. 

We can also say that we would not exist without the long 

term stability of the basic constituents of matter, i.e. electrons 

and protons. It is not much of a surprise then that the number 

of period doublings for the basic constituents and the related 

phenomena is in accordance with the theoretical stability 

condition (3). 

Equation (21) suggests that the proton alone is superstable, 

not the proton-antiproton pair. It is therefore tempting to 

think that a proton is actually a positron in disguise, because 

the electron-positron pair is superstable. If so, we do not need 

to search for the possible anti-universes. 

What may be surprising is the close relation between the 

electron-positron pair, CBR and the 21 cm Hydrogen line. 

The origin of the CBR may not be the ‘Big Bang’ at all. 

The initial gas and dust cloud around the Sun seems to 

have undergone period doubling, since the material has 

accumulated in corresponding orbits. The orbital velocities of 

the planets are determined by consequent N-numbers in (32) 

with one exception. There is an allowed unoccupied orbit 

next to and outside Jupiter’s orbit. Figure 5 shows that 

Jupiter has moved towards the empty orbit as if the missing 

planet had pulled it there. 

If the local group of galaxies is considered as a local 

energy system, like the Solar system, one would expect to 

find an energy related period doubling phenomenon. The 

redshift quantization seems to be one. 

The behavior of nonlinear dynamical systems is normally 

analyzed using space-time coordinates. In this study 

space-period is used instead, because we are interested in the 

period doubling phenomenon.  

A second order differential equation is derived for 

1/r-nonlinear systems using Kepler’s law. The solution shows 

that 3-d and 4-d period doubling is possible given proper 

parameter values in (38) and (39). 
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